Is This the Crop That Saves Florida Agriculture?

by Tom Schenk

If you’ve driven through central and southern Florida over the last several years, you may have wondered why much of the land that used to grow oranges and grapefruit in central and southern Florida now sits fallow and choked with weeds? Most people are aware of the fatal citrus greening disease that has caused one of the greatest agricultural disasters in US history. Almost every remaining grove in the Sunshine State is infected with this disease as researchers struggle to find a cure with little to show for results.

In 2017, the growers who were still in the game were spending between $1,500-$2,500 per acre in expenses to coax a profitable citrus crop out of their dying groves. These efforts were met with almost ideal growing conditions and by all accounts it appeared that their efforts would be rewarded with one of the best crops they’d seen in years.

Until the arrival of Hurricane Irma which went through Florida like a chainsaw leaving no grove untouched.

Damage reports indicate that half or more of the unripen fruit is now laying on the ground while what remains in the trees is bruised or will eventually drop off in the coming weeks.  And if that wasn’t bad enough, many groves were left standing in water far beyond the critical 72 hours which is almost always fatal for citrus trees.

Directly and indirectly, Florida’s citrus industry creates almost 45,000 jobs which translate to almost a $9 billion contribution into Florida’s economy. Today’s citrus industry has shrunk by well over half from its peak in the late ‘90’s leaving rural towns and communities distressed and struggling to survive as families and individuals move away to find work elsewhere.  There are only 7 remaining processing plants in the state and it is highly questionable how many will remain open and viable when ultimate crop losses may be as high as 80%-90%.  There’s a point where it does not make economic sense to salvage the remaining fruit in a grove or open a processing assembly line for the smallest harvest since the 1940’s. Like any commercial real estate, ag land is generally priced as a function of its income earning value plus any development potential. Citrus grove and that used to be valued at $10,000 – $15,000 or more per acre now sells for less than half to a third of that.

But why can’t some other crop fill this void?  It’s not for lack of trying.

South Florida’s hundreds of thousands of acres of sandy, shallow soils and rainy climate narrow the field of viable crops that can be profitably grown in those conditions.  Afternoon rains continually flush fertilizers and chemicals out of the soils, into the drainage canals, and ultimately Florida’s coastal estuaries and Everglades. In spite of these challenges, many growers and outside investors have ventured into some alternative specialty crops such as peaches, blueberries, tomatoes, and strawberries.  Establishment costs, however, are very high.  In the case of blueberries, it could exceed $15,000 per acre! To make matters worse, growers have found themselves struggling with a diminishing supply of farm labor. And finally, whenever prices spike higher from either early season prices or if there is a production shortfall, floods of cheaper imports arrive in a matter of days from Mexico and South America.

  • So what can work in Florida’s unique agricultural ecosystem?

There is one ray of hope that shows great promise of restoring ag land values and revitalizing business in South Florida’s rural towns.  In 2011, an enterprising group of entrepreneurs from a company called TerViva began approaching some of the state’s largest citrus growers to establish some trial sites with a tropical/subtropical tree crop called pongamia. Pongamia is an oilseed tree that is native to Australia and India.  Conceptually, the crop is like growing soybeans on trees, but at yields 8x-10x over the best Iowa farmland. Pongamia is not new to Florida.  At the turn of the last century, it was introduced as a landscaping ornamental and today a few of these trees can still be found along the turnpike, shopping centers, and in parks in south Florida.

Creating a viable agricultural industry from scratch is not an easy task, but it has been done.  Soybeans were unheard of until they were introduced in the early 1930’s and palm oil trees were developed from the rubber plantations in Southeast Asia after WWII.  Interestingly, products from pongamia are thriving industries in India where the oil is used for industrial applications like fuel, lubricants, paints, surfactants, biopesticidal horticultural sprays, and more.  The “cake” or “meal” that remains after the oil is extracted is coveted as a great fertilizer that releases its nitrogen slowly so a plant can utilize it better. In India it is used to suppress soil-borne pests like nematodes that are the arch enemy of many of our food crops.

So what is the path to prove the viability of a new crop in the US – especially in such a challenging geography as Florida? Below is a checklist of the gauntlet it had to run.

  • Will the tree grow here?

This was the first order of business TerViva set out to prove to growers when they arrived in 2011.  The first grower who would listen to them was Ron Edwards CEO of Vero Beach – based Evans Properties. Edwards, former COO of Tropicana and co-founder of SoBe Beverages and Blue Buffalo Pet Foods, has a track record of spotting a good management team, a good business model, and an idea that had a good shot of succeeding.  Skepticism was high so Terviva offered to split the costs of the first trials.

The result was beyond expectations.  Growers such as Graves Brothers, US Sugar/Southern Gardens, DNE, Alico, Mosaic and others soon followed.  Around the state, the tree grew well in diverse sites with sandy soils, toxic soils, saline soils, and even Mosaic’s challenging clay reclamation soils. In 4 years the trees were 10’ to 16’ in height.

 

FSG_June2017-1

Pongamia orchard in Florida – Photo by TerViva

The trials have shown that these trees survived hurricanes Mathew and Irma, 2 weeks in standing water, frosts, non-irrigated fields, poor soils, higher-salinity irrigation not suited for most other crops, sand, clay, pests, and heat. Indeed, pongamia can deal with Florida’s challenging climate and soils..

  • What are the costs to grow it?

Establishment costs are very similar to citrus.  Indeed, the first thing that growers noticed was that the tree could literally be dropped right into the existing citrus infrastructure. The trees cost about the same as citrus and the planting densities are equal to or slightly less than citrus. Some growers literally planted between the stumps of former orange trees. To date in Florida, no pesticides have been used.  This hardy tree has grown through a laundry list of tropical and subtropical pests that growers spend millions of dollars on to control.  The biggest annual expense is weed maintenance until that young tree can get some height and eventually shade out a lot of the undergrowth which can subsequently be managed with mowing. So annual maintenance costs tally to about $400-$500 per acre – about one third or one fourth of what citrus currently spend.  Some growers used a small amount of fertilizer, and many used none at all.  Pongamia is a legume so it enriches the soil by making its own nitrogen.

  • How is it harvested?

Almost all of the fruit and vegetable crops grown in Florida need manual farm labor and every year that has been more difficult and costly to come by. Conversely, a crew of 2 and a nut tree shaker like those used on pistachios or almonds can harvest a pongamia tree in 3-5 seconds.  Those cost benefits accrue directly to the bottom line.  For the past 2 years as some of the young trees have produced pods early, Terviva has put on grower demos to show how easy and fast the tree can be harvested.

  • Who’s going to process it?

The beauty of the pongamia industry is that everything about it is low-tech. The tree puts out a pod that is easily shelled with a nut sheller and crushed with conventional soybean crushing equipment.  It doesn’t require elaborate $100 million processing plants or exotic enzyme formulations to make it work. The bean inside that pod looks about the size and shape as a lima bean.  It consists of about 40% oil and the 60% balance is the remaining seedcake. In 2017, the forward-thinking Hardee County IDA and its head, Bill Lambert, unanimously voted to build the first pongamia crushing plant in Florida. Because of the elite varieties that Terviva is cultivating at various commercial greenhouses in the state, an acre of their trees is conservatively estimated to yield about 400 gallons of oil and almost 3 tons of seedcake!

  • Who’s going to buy the products?

This is where it gets interesting. There is a long buffet of diverse markets for this oilseed tree crop and therein lies one of its greatest advantages.  These profitable markets range at the low end from a feedstock for industrial oils, to feed, and all the way up to highly-valued biocontrol products for the organic agriculture.  Organic growers have long been familiar with the benefits of pongamia’s oil and meal products under the Indian name karanja.

Like soy, pongamia oil is a long-chain C18:1 compound that can readily be refined into biodiesel or bio-jet A fuel.  Those tests have been tested and validated by Shell, Valero, REG, and ARA Labs. Refiners view a pongamia crop in Florida as a new oilfield that faithfully produces oil every year. Fuel is the base-case end market and can produce fine investment returns.

Classified as a politically correct “non-food” feedstock it can be used to make biodegradable polymers such as fracking fluids, plastics, detergents, paints, and other industrial products.  Secondary compounds found in the oil have documented and long used in India as extraordinarily effective biopesticides as good as or more effective than more commonly known neem products that are widely used by organic farmers, gardeners, and in the fast growing cannabis industry.  Because of the lack of need for inorganic chemicals used in growing pongamia, these high-value end-products are in growing demand by organic feed and growing operations. Sales into these channels alone can double or triple the value of the cake and oil.

The seedcake or meal can be further refined to produce a (30%) high-protein animal feed, or simply be used as an environmentally-friendly, slow-release 4-1-1 fertilizer that plants can better utilize.  Because the backbone of the oil shares similar properties to various food oils, scientists have told Terviva that the secondary compounds could be stripped out to upgrade the oil to “food quality” which could be of great value in parts of the world where pongamia could be grown on a footprint not adaptable to traditional oilseed crops.

  • Bus 101

The arrival of the pongamia farming model into the staggering agricultural void created by the citrus greening disease could be a classic business school case study.  The trail has been blazed.  A deeper dive into this business model reveals some very unique attributes.  The trees high yields offer an extraordinary margin for error in any given crop year.  For many alternative oilseed row crops planted elsewhere in the US (often as a new rotational crop), the entire growing season can tolerate few hiccups or else the yields will have a difficult time justifying the risks of planting and new machinery investments.  Pongamia’s low annual maintenance costs also allow a lot of margin for adverse weather surprises.  Pongamia’s diverse downstream markets mitigate marketing risks.  Low-tech processing that can create products from fuel and feed to fertilizer and biocontrol horticultural sprays can allow plenty of flexibility to target up-cycling markets and reduce dependency on single consumer markets.  And depending on those markets, Terviva estimates that at maturity, the groves could generate a net income between $700- $1,500 per acre.

What would the ideal replacement crop look like if it showed up at growers’ doorstep? Probably something like pongamia.

Toward a Low-Carbon Transportation Future: Part 2

By Tomas Endicott, Processing & Markets Manager

Last week I wrote about carbon intensity and how the GREET model, standardized by the U.S. Department of Energy, quantifies the amount of carbon dioxide (CO2) that is generated when producing different transportation fuels—both fossil fuels and renewable fuels.

Today, let’s talk about factors that contribute to producing low-carbon transportation fuels.

Lifecycle carbon tracks CO2 emissions from feedstock production to combustion.

Carbon dioxide (CO2) emissions are tracked on a lifecycle basis. That is, CO2 is generated at many points in a fuel production pathway: feedstock acquisition, processing, refining, transport. The more carbon efficient each step in a particular fuel production pathway, the lower the carbon intensity of the final fuel. For processing fossil fuels or biofuels, reducing carbon emissions may include using renewable sources of heat and electricity that generate less CO2, such as biogas, wind power and solar power. Acquiring feedstock to produce transportation fuels presents many different pathways, each unique in the lifecycle CO2 emissions it generates.

All feedstocks are not created (carbon) equal.

Fossil fuel feedstocks—crude oil or natural gas—are fairly carbon-consistent no matter what their origin. They all are extracted in enormous volumes from underground. Biofuel feedstocks are incredibly diverse. There are many more variables that contribute to carbon intensity throughout every step of any particular biofuel feedstock production process.

All plants are self-sufficient. Some more than others.

Most plants are photosynthetic. They create hydrocarbons in the form of carbohydrates (i.e starch, sugar, wood) and/or fats (oils) using carbon dioxide (CO2), nutrients, sunlight and water. The plants use these carbohydrates and fats for their own energy, and they “invest” them into their seeds for the next generation. These carbohydrates and fats also are the source of the energy we harvest and convert into biofuels.

All plants also need some amount of nitrogen to grow and thrive. Legumes, like soybeans, alfalfa seed and pongamia seed, are special in that they harness their own nitrogen—the backbone for proteins—through symbiosis with bacteria that live on their roots. These rhizobium bacteria fix elemental nitrogen from the atmosphere and supply it to the plant in a form the plant can use.

Less inputs equals lower carbon intensity.

Non-leguminous plants must derive nitrogen from compounds in the soil. In a natural environment, that source of nitrogen may be composted organic matter or nitrogen compounds deposited in the soil through earthworm activity. Because modern, improved agricultural crops produce such high yields, they require large quantities of commercial fertilizer. Commercial nitrogen fertilizer is synthesized from natural gas, and its production requires significant energy input. As a result, producing commercial nitrogen fertilizer generates carbon dioxide (CO2) emissions, and those emissions are attributed to the lifecycle carbon of the crops that use the nitrogen fertilizer.

Nitrogen is expensive, both in the energy consumed to manufacture and transport it and in the dollars farmers must expend to apply it to their fields. Because nitrogen fertilizers must be applied to non-leguminous crops like corn and canola, producing biofuels from these non-nitrogen-fixing crops is more carbon intensive than producing biofuels from legumes.

By-products provide additional value.

Oilseed crops, like soybeans, canola and pongamia, can provide oil as feedstock for renewable fuels. They also provide another by-product: high-protein meal, which has significant value as livestock feed and as organic fertilizer.

Pongamia seeds are removed from their shells before being processed. These shells are half the weight of the harvested pongamia pods, and they can provide significant biomass to supply renewable, low-carbon heat and power to the pongamia biofuel processing pathway.

Greater yield per acre equals lower carbon intensity.

Because carbon dioxide (CO2) emissions generated while producing crops are spread across the total yield of a particular crop, crops that produce higher yields per acre can be more carbon-efficient. Every trip across a field to till, seed, fertilize, spray or harvest increases CO2 emissions and increases the carbon intensity for a particular crop. Crops with higher yields spread their carbon dioxide (CO2) emissions over larger production.

Growing conditions also affect yield. Logically, crops grown in tropical and sub-tropical environments experience more sunshine and heat, and they have longer growing seasons, so they produce larger yields per acre.

Annual or perennial makes a difference.

Annual crops—those that must be planted every year—require some amount of tillage or application of broad spectrum herbicides (i.e Round-Up) to prepare the seedbed and to minimize weed competition with the cultivated crop. Tillage alone can increase carbon dioxide (CO2) emissions from agricultural fields simply by exposing organic matter in the soil to oxygen, thereby, allowing it to be decomposed aerobically, which generates CO2.
kai-oberhauser-252546
Simply tilling the ground increases carbon dioxide (CO2) emissions from agricultural fields. Photo by Kai Oberhäuser on Unsplash

Perennial crops are established once and produce for many years. They do not require annual tillage. For large trees like pongamia, annual maintenance is low when the tree canopy prevents sunlight from penetrating to the ground, so nothing can grow there.

Although they require a few years to produce their first crop, yields for perennial crops tend to be much higher per acre than yields for annual crops. Whereas the average yield for soybeans in the U.S. is about 2,700 pounds per acre, perennial pongamia trees can produce more than 10,000 pounds of seeds per acre per year at eight years of age and beyond. The average lifespan of a pongamia tree is at least 25 to 30 years.

How many gallons of oils per acre?

For the purpose of biodiesel or bio-jet fuel production, seeds of different crops have different concentrations of oil—their percentage of oil by weight. Whereas soybeans contain only 16%-18% oil by weight, canola seeds contains more than 40% oil by weight and pongamia seeds contain 30% to 40% oil by weight. Considering the combination of per acre yields and the oil concentration in the seeds of a particular crop determines the amount of biodiesel or bio-jet fuel that can be produced by a given cultivated area. Here is a chart demonstrating the amount of oil per acre produced by different oilseed crops.

More yield per acre equals greater carbon efficiency.

Whereas soybeans produce only 55 to 60 gallons of oil per acre annually and canola produces about 120 gallons of oil per acre annually, mature pongamia trees can produce more than 450 gallons of oil per acre every year.

The CO2 generated to harvest an acre of soybeans or to harvest an acre of pongamia seeds are similar. Mature pongamia trees, however, yield almost four times more seed per acre than soybeans, and they yield about eight times the oil for every acre harvested. Now that’s efficiency!

Maximizing transportation efficiency minimizes CO2 emissions.

To achieve maximum carbon efficiency, transportation fuels need to be produced and moved in large volumes. It is most carbon-efficient to move fuels by pipeline, although pipelines are expensive to build and they have other environmental considerations. Moving a million gallons of fuel on a single ocean-going barge is ten times more efficient than hauling the same volume of fuel the same distance in hundreds of tanker truck loads. The efficiency of moving fuel in 25,000-gallon rail cars lies somewhere between the efficiency achieved by barges and the efficiency attributed to tanker trucks. Renewable fuels, like fossil-based fuels, must be produced on a large scale to achieve transportation efficiency.

Going further on a gallon of fuel reduces CO2 emissions too.

The most efficient gallon of fuel is the one that you never use. Producing low-carbon fuels at scale is only half the battle. Reducing consumption of all transportation fuels is the best carbon-reduction strategy for the transportation sector. Electric cars, hybrids and clean diesel technology are all available today, and all are improving with each new model year. In 2012, President Obama established new Corporate Average Fuel Economy (CAFE) standards which will raise the average fuel efficiency for all new cars and trucks in the U.S. to 54.5 miles per gallon by 2025. Impressive! Currently, the CAFE standard is 35.5 miles per gallon.

Carbon-efficient, sustainable biofuel feedstock, high-protein livestock feed and organic fertilizer from the perennial pongamia tree.

The pongamia tree can provide a unique and substantial contribution to the United States’ sustainable, low-carbon biofuel future. It is a nitrogen-fixing, subtropical tree that is native to India, Indonesia and Australia, and it grows well in Florida and in Hawaii. It is both drought resistant and accustomed to Monsoonal rains (TerViva’s pongamia orchards in Florida held their own against the wind, rain and flooding from Hurricane Irma last week). Pongamia can grow on sandy soils, and it is resistant to moderate salinity. It is a perennial tree that is highly productive for both non-edible oil as a feedstock for biofuels and for protein-rich meal for livestock feed and fertilizer.

Imagine our low-carbon transportation future!

TerViva is rolling out pongamia orchards on abandoned citrus land in Florida and on land that formerly grew sugarcane in Hawaii. Imagine a future where 100,000 acres of pongamia trees produce 50 million gallons of biofuel and 340,000 tons of high-protein meal each year. Imagine biomass heat and power produced from a half-million tons of pongamia shells harvested annually. Imagine bio-char from gasified pongamia shells sequestering carbon in the soil for thousands of years—steadily reversing the CO2 increase in the earth’s atmosphere.

Imagine millions of acres of pongamia orchards spread across the sub-tropical areas of Asia, Africa, Mexico and South America providing billions of gallons of biofuel every year. Imagine fuel efficient vehicles that go twice as far on a gallon of fuel so that we consume half the transportation fuel that we do today. With biofuels, electric vehicles and other technologies in the mix, renewable fuels could make up 50% of the total transportation fuel consumption in the U.S. within twenty years.

This is not a pipedream. It is absolutely possible. It is a matter of aspiration, effort and will.

Let’s do it!

We Can Reverse Climate Change

by Lila Taheraly

After learning about Project Drawdown last year, I could breathe a sigh of relief. I could finally envision an appealing goal for the world: reversing climate change. Not mitigating it, adapting to it, or solely reducing greenhouse gas emissions, but actually reversing climate change.

Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming is a book which gathers 100 solutions to reduce greenhouse gas emissions and sequester carbon. It ranks them based on their potential carbon impacts in the next 30 years, and studies their implementation costs compared to business as usual (using fossil fuel oil, gas and coal). Published in June 2017, the book describes a possible and hopeful future.

LT paul-morris-286949

PC: Paul Morris on Unsplash.com

What is Drawdown? Drawdown represents the moment when greenhouse gas concentrations in the atmosphere begin to decline. Combined, all these proposed solutions could eliminate up to one trillion of tons of CO2 from the atmosphere by 2050 — enough to prevent the climate tipping point of 2 degrees Celsius over pre-industrial level. These solutions would also cost less and create more jobs than business as usual.

Below are the top 10 solutions in terms of carbon impact and their potential carbon savings by 2050:

LT karsten-wurth-inf1783-63308

PC: Karsten Würth on Unsplash.com

  1. Refrigerant Management – 89.74 GT CO2* eq.
  2. Onshore Wind Turbines – 84.60 GT CO2 eq.
  3. Reduced Food Waste – 70.53 GT CO2 eq.
  4. Plant-Rich Diet – 66.11 GT CO2 eq.
  5. Tropical Forests – 61.23 GT CO2 eq.
  6. Educated Girls – 59.60 GT CO2 eq.
  7. Family Planning- 59.60 GT CO2 eq.
  8. Solar Farms – 36.90 GT CO2 eq.
  9. Silvopasture – 31.19 GT CO2 eq.
  10. Rooftop Solar – 24.60 GT CO2 eq.

Beyond these 10 solutions, the real power of this book lies in the abundance of solutions and the measurement of their potential impact. These technologies all exist today, and some are scaling up right now. In the USA, in 2016, solar power employed more people than electricity generation through coal, gas and oil combined.

To reflect on this profusion of solutions, here is my selection of favorites through an award competition.

The unexpected: Educating Girls, ranked 6th.

Discovering “Educating Girls” as the 6th solution to mitigate Climate Change was fascinating! After the surprise, the explanation made perfect sense. Educated girls tend among others to have fewer and healthier children, to have higher wages and contribute more to the economic growth. In developing countries, educated women also grow more productive agricultural plots, and their families are better nourished. Today, there are still barriers preventing 62 million girls from their education rights.

The low-key: walkable cities, ranked 54th.

Walkable cities or neighborhoods favor walking over driving (thus reduce CO2 emissions but also improve health). In a neighborhood, walkability can include density of homes, offices, and stores; practicability of sidewalks, walkways and pedestrian crossings; and accessibility to public transportation. Today, demand for walkable cities far exceeds the supply. You can check the walkability of any location via applications like this one.

The never-heard of: temperate forests, ranked 12th.

We hear so much about the tropical forest degradation, than we tend to forget its sibling: the temperate forest. A quarter of the world’s forest lies in temperate zone, either deciduous or evergreen. 99% of it has been altered throughout history with timber, conversion to agriculture or urban development. This solution is to restore and protect temperate-forests on degraded land. Young temperate forests sequester carbon in both soil and biomass at very fast rates.

watermill

The most picturesque: in-stream hydro, ranked 48th.

While hydropower reminds us at huge dams, reservoirs, and big environmental impacts, in-stream hydro is defined as less than 10 mega watts hydropower technologies. They are small scale in-stream turbines. The advantage of small scale is that turbines can be designed to have a minimal impact on the environment and become accessible in remote territories like Alaska or Nepal, unlocking great potential.

The most related to our business: perennial biomass, ranked 51st.

Compared to annual crops like corn, perennial biomass grows for many years. In a climate perspective, it makes a fundamental difference. Perennial biomass throughout their lifetime requires fewer energy inputs, and prevents soil erosion, produces stable yields, supports pollinators and biodiversity. As an example, Pongamia, an oilseed producing tree, is a legume and fixes nitrogen naturally.  Pongamia also grows deep roots thereby reducing water needs and increasing the carbon sequestration.

My  favorite coming attraction: living buildings

Besides 80 solutions against climate change, Project Drawdown also introduces 20 “coming attractions”. One of them is “Living Buildings”. Living buildings answer the question: How do you design and make a building so that every action and outcome improves the world? For example, Living buildings could grow food, use rainwater and protect habitat. The Brock Environmental Center in Virginia Beach, VA, completed in 2014 produces all of its drinking water from rainfall, uses 90% less water than a commercial building of the same size, and generates 83% more energy than it consumes.

Curious and inspired by Project Drawdown? You can visit their website, read the book, and come back to tell me about your favorite solutions.

 

 

 

 

*Note: 1 gigaton of CO2 (GT) = 1,000,000,000 tons of CO2.

At ambient temperature, one ton of CO2 holds on in 559 cubic meters (19,775 cubic feet), i.e. in an 8.25 m high cube (27 ft).

 

 

 

From Inside the Pipeline: Energy & Ag in Hawaii

By Marie O’Grady, Elemental Excelerator Communications Coordinator

Exhaust poured from the truck as it came to a grinding halt at the base of a conveyor belt, delivering Hawaiian Commercial & Sugar Company’s last cane harvest, symbolizing the end of an era in Hawaii. As happened in Puerto Rico and Trinidad & Tobago, growing sugar in Hawaii was no longer profitable.

In early 2016, Alexander & Baldwin (A&B), the fourth largest land owner in Hawaii, announced the close of Hawaiian Commercial & Sugar Company (HC&S), the state’s last large-scale sugar plantation. Over the years, HC&S had faced controversies around water, pesticides, and field burning, and in 2015, the company incurred a $30 million operating loss.

Alexander & Baldwin announced in early 2016 that all 36,000 acres of former HC&S land would be transitioned to diversified agriculture, such as energy crops, agroforestry, livestock, diversified food crops, and orchard crops. Last month, A&B announced a new partnership with TerViva to cultivate pongamia on 250 acres of former plantation land.

EEx TerViva - orchard - 1

We believe pongamia can help diversify agriculture production on Maui while also potentially addressing our community’s need for renewable fuels. Our former sugar lands provide a great opportunity to grow more energy crops locally as they are ideally suited for large scale cultivation and mechanical harvesting.” – A&B President & CEO, Chris Benjamin

TerViva was the first ag company to join Elemental Excelerator’s portfolio in 2014. As part of their demonstration project, they are growing more than 200 acres of pongamia trees on Oahu and Maui. The oil extracted from pongamia seeds is well suited for industrial applications such as biopesticides, lubricants, chemicals, and fuels – and the residual seed cake shows promise as a feed supplement for beef cattle. Compared to soy, pongamia requires only 25 percent of the chemical and water inputs. One acre of pongamia produces 10 times more oil and 3 times more protein rich seed cake than one acre of soybeans.

EEx TerViva 3

This project is not only transformational for TerViva (it’s their first orchard in the region), but it’s also transformational for Hawaii.

  • Local farmers and agribusinesses are a critical source of economic stability for rural economies, through jobs and direct and indirect spending. TerViva is steadily growing its Hawaii-based team, and the company supports two local nurseries and a handful of contractors.
  • Pongamia is able to grow on marginal agricultural land that is not suitable for other crops. This is ideal for a place like Hawaii where the soil, which once provided resources for thousands of acres of sugarcane and pineapple, has been largely stripped of key nutrients.
  • Biofuel and biomass play a role in Hawaii’s transformation to clean energy, providing firm, dispatchable power. Hawaiian Electric’s December 2016 Power Supply Improvement Plan outlines how the utility plans to utilize biofuels in power plants to replace oil as a fuel source.

There is a growing trend in the number of new agtech companies mature enough for a demonstration project, as evidenced in Elemental Excelerator’s pipeline of applicants:

  • Since 2014, EEx had added four other agriculture startups to the portfolio of 53 startups. These companies are working to increase local beef production, increase crop yields, and help small farmers use data to reduce water usage.
  • Over the last few years, EEx has also seen a dramatic increase in applications from ag startups. This year, 10 percent of the companies who took the first step to apply were agriculture-related. That’s twice as many as last year!

After Monsanto acquired the Climate Corporation in 2013, ag tech gained significant attention. In 2014 alone, investments in ag tech grew 170%. Most innovation was focused in the areas of biotechnology and seed genetics. Today, subsectors include bioenergy, sustainable protein, decision support tech, soil & crop tech, advanced imaging & data analytics, and many others. Investment and innovation are no longer limited to players in the agriculture sector. Moreover, as concern grows over droughts, weather fluctuations, the cost of farm labor, and competition with international markets, key players such as farmers, agro-businesses, and landowners are searching for ways to grow smarter.

 

Elemental Excelerator

Elemental Excelerator helps startups change the world, one community at a time. Each year, they find 12-15 companies that best fit their mission and fund each company up to $1 million to improve systems that impact peoples lives: energy, water, agriculture, and transportation. To date, Elemental Excelerator (EEx) has awarded over $20 million to more than 50 companies. What makes EEx unique? They co-fund, co-design, and co-develop projects and strategies that improve infrastructure and sustainably enhance communities. The program is funded by a diverse coalition of utility partners, corporate partners, the U.S. Navy, the U.S. Department of Energy, state government, and philanthropic organizations, and is structured as a non-profit created in collaboration with Emerson Collective.

 

Related articles:

2015 State Ag Land Use Baseline Data, Hawaii Department of Agriculture

AgTech Is The New Queen Of Green, TechCrunch

Cultivating Ag Tech: 5 Trends Shaping The Future of Agriculture, CB Insights

Hawaii’s Last Sugar Plantation Finishes Its Final Harvest, NBC

Keep Edible Oils for People, and Non-edible Oils for Industry

By Tom Schenk

In 2012, actor Matt Damon starred in a movie “Promised Land”.  The story was about a rural community whose water was being contaminated from chemicals used in the injection fluids from a petroleum company’s nearby oil and natural gas fracking operation.  While the movie was a box office flop for Damon, it did raise the public’s awareness about the toxic cocktail of chemicals (benzene, toluene, xylene, and ethylbenzene, and methanol, to name a few) that are combined with the large quantities of water (up to 7 million gallons) and sand that are injected deep underground at high pressures to fracture and open up rock formations so oil and gas can flow to a well. These chemicals help to reduce corrosion of the well, lubricate the extraction process, and prevent clogs and bacterial growth.

fracking

Many studies have claimed that these chemicals were used in such small quantities that they posed little risk to aquifers and other groundwater sources. Nevertheless, the movie, numerous articles, and academic studies raised the public’s awareness about some of the potential dangers created by this new drilling technology.  And no doubt it also raised alarms in the oil and gas companies’ legal and risk management departments that contaminating the water supply of one or more cities would wipe the company off the map.

Guar gum has been used in the food industry for many decades.  It has also been one of the favorite products drillers used to hold that sand in suspension and deliver it to its destination.  The greatest source for guar gum historically has been India.  The boom in fracking has created monumental price spikes and shortages for drillers in obtaining this product and has created havoc on their P&L’s.

In recent years, ExxonMobil, Halliburton, and a myriad of other oil-related companies have been developing suitable alternatives – often from plant-based oils – for developing greener, more environmentally-friendly lubricants for their drilling activities.  They would also like to see a more dependable domestic supply for the ingredients in their fracking recipes for biodegradable polymers.

However, in the fast developing world of biodegradable polymers, drilling fluids are almost a rounding error by comparison to all the other wonderful consumer and industrial products that technology that is developing from plant-based oils such as marine oils, auto and aviation lubricants (often with superior wear and heat properties), surfactants, detergents, shopping bags, food containers and countless other products where petroleum-based products and plastics have historically dominated. This technology is in a profound growth phase as almost anything we currently know as plastic can be reproduced in a more sustainable manner with plant-based oils rather than petroleum. And it sells because the consumer wants it.

Soy is the most dominant feedstock for many of these renewable products, as well as corn, canola, flax, palm, cottonseed, peanut, and others that are cultivated in large quantities worldwide.  Couple the growth in biofuels with the growth in this new technology for industrial applications, and all it will take is one or two bad years of crop production for there to be be a collision between food security for people and feedstock supply for factories and refineries.

Only the most arable lands – which are in diminishing supply – should logically be devoted exclusively to food.  Champions of these earth-friendly fuels and industrial products made from renewable feedstocks are missing the full picture.  They should be calling for the development of high-yielding non-edible oilseed crops that can thrive on the marginal land!

This is Terviva’s mission.  One of the most promising crops in this space is the wild tree called pongamia that our company is commercializing. These oilseed trees can produce up to 10x the amount of oil per acre that the best soybean land in Iowa can produce. Carbon is sequestered, and vast fallow acreage in Florida and Hawaii is on its way to becoming annually renewable – and profitable -“oilfields”.  Hardy, high-yielding crops on marginal lands are the optimum way to achieve peak biodiversity. Leave the good lands to make food for people.