From Inside the Pipeline: Energy & Ag in Hawaii

By Marie O’Grady, Elemental Excelerator Communications Coordinator

Exhaust poured from the truck as it came to a grinding halt at the base of a conveyor belt, delivering Hawaiian Commercial & Sugar Company’s last cane harvest, symbolizing the end of an era in Hawaii. As happened in Puerto Rico and Trinidad & Tobago, growing sugar in Hawaii was no longer profitable.

In early 2016, Alexander & Baldwin (A&B), the fourth largest land owner in Hawaii, announced the close of Hawaiian Commercial & Sugar Company (HC&S), the state’s last large-scale sugar plantation. Over the years, HC&S had faced controversies around water, pesticides, and field burning, and in 2015, the company incurred a $30 million operating loss.

Alexander & Baldwin announced in early 2016 that all 36,000 acres of former HC&S land would be transitioned to diversified agriculture, such as energy crops, agroforestry, livestock, diversified food crops, and orchard crops. Last month, A&B announced a new partnership with TerViva to cultivate pongamia on 250 acres of former plantation land.

EEx TerViva - orchard - 1

We believe pongamia can help diversify agriculture production on Maui while also potentially addressing our community’s need for renewable fuels. Our former sugar lands provide a great opportunity to grow more energy crops locally as they are ideally suited for large scale cultivation and mechanical harvesting.” – A&B President & CEO, Chris Benjamin

TerViva was the first ag company to join Elemental Excelerator’s portfolio in 2014. As part of their demonstration project, they are growing more than 200 acres of pongamia trees on Oahu and Maui. The oil extracted from pongamia seeds is well suited for industrial applications such as biopesticides, lubricants, chemicals, and fuels – and the residual seed cake shows promise as a feed supplement for beef cattle. Compared to soy, pongamia requires only 25 percent of the chemical and water inputs. One acre of pongamia produces 10 times more oil and 3 times more protein rich seed cake than one acre of soybeans.

EEx TerViva 3

This project is not only transformational for TerViva (it’s their first orchard in the region), but it’s also transformational for Hawaii.

  • Local farmers and agribusinesses are a critical source of economic stability for rural economies, through jobs and direct and indirect spending. TerViva is steadily growing its Hawaii-based team, and the company supports two local nurseries and a handful of contractors.
  • Pongamia is able to grow on marginal agricultural land that is not suitable for other crops. This is ideal for a place like Hawaii where the soil, which once provided resources for thousands of acres of sugarcane and pineapple, has been largely stripped of key nutrients.
  • Biofuel and biomass play a role in Hawaii’s transformation to clean energy, providing firm, dispatchable power. Hawaiian Electric’s December 2016 Power Supply Improvement Plan outlines how the utility plans to utilize biofuels in power plants to replace oil as a fuel source.

There is a growing trend in the number of new agtech companies mature enough for a demonstration project, as evidenced in Elemental Excelerator’s pipeline of applicants:

  • Since 2014, EEx had added four other agriculture startups to the portfolio of 53 startups. These companies are working to increase local beef production, increase crop yields, and help small farmers use data to reduce water usage.
  • Over the last few years, EEx has also seen a dramatic increase in applications from ag startups. This year, 10 percent of the companies who took the first step to apply were agriculture-related. That’s twice as many as last year!

After Monsanto acquired the Climate Corporation in 2013, ag tech gained significant attention. In 2014 alone, investments in ag tech grew 170%. Most innovation was focused in the areas of biotechnology and seed genetics. Today, subsectors include bioenergy, sustainable protein, decision support tech, soil & crop tech, advanced imaging & data analytics, and many others. Investment and innovation are no longer limited to players in the agriculture sector. Moreover, as concern grows over droughts, weather fluctuations, the cost of farm labor, and competition with international markets, key players such as farmers, agro-businesses, and landowners are searching for ways to grow smarter.

 

Elemental Excelerator

Elemental Excelerator helps startups change the world, one community at a time. Each year, they find 12-15 companies that best fit their mission and fund each company up to $1 million to improve systems that impact peoples lives: energy, water, agriculture, and transportation. To date, Elemental Excelerator (EEx) has awarded over $20 million to more than 50 companies. What makes EEx unique? They co-fund, co-design, and co-develop projects and strategies that improve infrastructure and sustainably enhance communities. The program is funded by a diverse coalition of utility partners, corporate partners, the U.S. Navy, the U.S. Department of Energy, state government, and philanthropic organizations, and is structured as a non-profit created in collaboration with Emerson Collective.

 

Related articles:

2015 State Ag Land Use Baseline Data, Hawaii Department of Agriculture

AgTech Is The New Queen Of Green, TechCrunch

Cultivating Ag Tech: 5 Trends Shaping The Future of Agriculture, CB Insights

Hawaii’s Last Sugar Plantation Finishes Its Final Harvest, NBC

Land Sharing vs. Land Sparing: Can We Maximize Yield and Biodiversity?

By Nathan Chan, TerViva Germplasm Development Associate

We often think of the environmental impacts of agriculture being limited to things like pesticides and nutrient runoff polluting waterways (see my colleague’s post for more on this), and methane emissions from livestock contributing to climate change, but one of agriculture’s biggest impacts has been its role as a leading cause in declines in wildlife and natural habitat. That may not resonate with those of us in Europe and the United States, where we’ve had a fairly mature agricultural industry for the past 100+ years (I challenge you to imagine what the West may have looked like before humans), but deforestation to create lands suitable for agriculture in South America and Southeast Asia is directly responsible for the loss of hundreds of thousands of hectares of habitat for thousands of species. This is not a sustainable approach moving forward as we aim to feed 9 billion people worldwide while working to maintain our remaining biodiversity.

Clear cutting and burning rainforests is common in the tropics to create more land for agriculture.

A popular framework for finding a sustainable solution gives us two strategies: “land sharing” and “land sparing”. In land sharing, lower intensity agriculture is practiced in favor of less productive methods that promote more suitable conditions for wildlife resulting in less food produced per acre. In land sparing, farmers practice high intensity agriculture to boost yields, enabling them to forego expansion and leave natural areas “wild”. There are tradeoffs with both approaches — organic “land sharing” farms have on average 30% higher species richness and 50% higher abundance than conventional “land sparing” farms, but produce 20-25% less yield per acre.

In an article examining the tradeoffs of food production and wildlife published by The Breakthrough Institute, Linus Blomqvist puts forward the idea that higher yields, especially in the row crops that use the most land globally, will always result in lower on-farm biodiversity because there are “simple biophysical components of yield growth that there is not much of a way around.” The highly specific management practices farmers must use to get maximum yields from a specific crop preclude the establishment of other plants, which form the basis of a habitat that can sustain wildlife. As evidence, Blomqvist cites declines in farmland bird populations in Europe and America being driven by the loss of habitat and nesting sites in high-intensity agriculture settings – not due to direct mortality from pesticides.

An example of a “land sparing” farm — diverse set of crops, surrounded by potential wildlife habitat.

Even in the most organic, ecologically friendly, “land sharing” farm one can imagine, any decision to increase yields would result in higher-intensity practices that would in turn decrease the farm’s ability to support wildlife. If higher yields per acre on an organic farm decrease on-farm habitat quality, than the only way to increase yield while maintaining habitat quality is to use more land. In the West, more land probably means acquiring farmland or uncultivated land from a neighbor.  However, in South America, Asia, or Africa expanding croplands often takes place at the expense of natural habitats like forests. Any gains in on-farm biodiversity may be offset entirely by the loss of natural habitats.

Multiple combines and tractors with grain carts harvested a large field of corn outside New Haven, Ky.

As we try to feed a human population of 9 billion-plus people, agricultural land will expand and will undoubtedly come at the expense of wildlife and natural habitats. The question we face is how to minimize that impact. Land sharing and land sparing underscore the idea that there is a tradeoff between food production and biodiversity: increasing one will invariably decrease the other. Fortunately, there are ways in which we can try to mitigate that trade off. Embracing GM technologies like Bt enables crops to produce their own insecticide (that is safe for human consumption) and reduce the need for spraying pesticides allowing non-target species to thrive. Incorporating staples of organic or agroecological farming like crop rotations and cover crops make it difficult for a single pest species to persist from year to year further reducing pesticide loads.

There is no correct answer to the land sharing vs. land sparing debate. Both ideas have their merits and embracing one or the other is better than nothing. The growth of the global human population will continue and it will be at the expense of the natural world, but through the discussion and implementation of ideas like land sparing and land sharing, and the incorporation of new crop technologies and agronomic practices we can hopefully reduce that negative impact.

Author’s Note: The idea behind this blogpost came largely from the previously mentioned article published by The Breakthrough Institute, Food Production and Wildlife on Farmland. I encourage you to read it if you are interested in this topic. 

Fixing Nitrogen, Waste

By William Kusch

irina-sorokina-253176footprint grass

Figure 1: What is your nitrogen footprint?

You may be familiar with the concept of carbon footprint, but when was the last time you measured your nitrogen footprint? If you are like me, up until very recently, the answer to that question would be: “huh?”.

I got to thinking about the topic when I read an article[1] that National Public Radio (NPR) published, profiling research on life cycle analysis (LCA) of producing a loaf of bread. The article concluded that 66% of greenhouse gas emissions were not from transportation, or baking, but from growing the wheat itself.  Further, “of the environmental impacts … 40% is attributable just to the use of ammonium nitrate fertilizers alone.”

Intrigued, I read on, re-read my colleague’s excellent blog post on animal and livestock nutrition, then clicked my way to a related article[2], also on NPR that dove deeper than greenhouse gas emissions. This story looked specifically at the nitrogen pollution linked to agriculture, with an emphasis on meat production. This piece outlined some agricultural sources and forms of this significant pollutant:

  • Gaseous emissions of nitrogen oxides (NOx) from livestock
  • Release of N2O, and NOx from soil microbes
  • Runoff from excess fertilizer applied to farm fields.

Well, you may say, so what? Isn’t most of the air we breathe nitrogen anyway?  While it is true that a large majority of the atmosphere is nitrogen, it comes in the form of inert N2. N2 is far different from N2O and NOx , two recognized pollutants. Here are a couple of the potential implications from the release and accumulation of N2O and/or NOx:

  • WK gulf mexico

    Figure 2: Image depicting marine dead zone in Gulf of Mexico

    Marine dead zones, such as the famous one in the Gulf of Mexico, where most ocean life has died due to lack of oxygen[3]

  • If concentration is elevated in drinking water, can lead to potentially fatal blue baby syndrome, other negative health impacts[4]
  • Emissions of NOx can lead to the hazardous type of ozone that remains near ground level. This type of ozone can trigger health problems, especially for children and the elderly[5].

Given that agriculture is one of the biggest contributors to nitrogen pollution, and also that no one is going to stop eating in order to stop polluting, what can people do to reduce their nitrogen footprint? Fortunately there are some simple, and effective options to pare the amount of nitrogen pollution associated with our daily activities:

  • Average Americans “eat about 1.4 lbs of protein per week, 2/3 of which come from meat and dairy. …you could cut your nitrogen footprint by more than 40% just by reducing your total protein intake to 0.8 lbs, the amount recommended by the USDA and the National Academy of Sciences”.
  • Get creative with your spending power: think about ways you could change one meal a week from animal protein to one that is centered around plant protein such as that from chickpeas, or assorted beans.
  • Throw away less of your food: an estimate from Natural Resources Defense Council[6] indicates that America wastes ~40% of our food by throwing it in the garbage prematurely, or unnecessarily.
  • Encourage your legislators to support agricultural land conservation efforts, especially in areas where plants filter fertilizer runoff before it enters the local watershed.
  • Consider a more fuel efficient, or electric vehicle when choosing your next set of wheels: while agriculture is the largest source of N2O, transportation also accounts for a large share of NOx[7].
WK orchard

Figure 3: Nitrogen-fixing pongamia trees in TerViva’s Hawaii orchard

At TerViva, we’re doing our part to mitigate this global nitrogen problem as well. We are growing orchards of pongamia: oilseed-producing trees that are legumes and harness the power of symbiotic bacteria to capture nitrogen from the atmosphere. This ability to provide nitrogen for itself allows pongamia to be cultivated using significantly fewer costly inputs relative to most conventional crops, like nitrogen fertilizers. After we harvest the seeds, we crush the crop in an oilseed press, yielding oil and seed cake. The oil serves as an excellent feedstock for biofuel. The seed cake is high in protein and we have discovered how to convert the pongamia protein into animal feed. In addition to feeding livestock, pongamia seed cake can also be used as a fertilizer[8]; we know this because people have been using pongamia cake as fertilizer in Southern and Southeast Asia for many hundreds of years. The reason this anecdote is relevant here, is that modern scientific techniques have recently been brought to bear, analyzing and quantifying the value of pongamia seed cake as fertilizer. In fact, in addition to demonstrating the value of pongamia products as fertilizer, recently published research shows that if pongamia seed cake is used as a fertilizer, there are compounds in the fertilizer that prevent nitrogen pollution from happening in the first place when farmers apply fertilizer to their fields [9].

Through this idea of considering our Nitrogen Footprint, we at TerViva are exploring ways that we can provide renewable, plant-based energy and protein to society, while at the same time preventing and mitigating some of the issues that arise from the modern lifestyles that afford us comfort and convenience.

References:

[1] http://www.npr.org/sections/thesalt/2017/02/27/517531611/whats-the-environmental-footprint-of-a-loaf-of-bread-now-we-know

[2] http://www.npr.org/sections/thesalt/2016/02/25/467962593/why-your-hamburger-might-be-leading-to-nitrogen-pollution

[3] http://www.noaanews.noaa.gov/stories2015/080415-gulf-of-mexico-dead-zone-above-average.html

[4] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1638204/

[5] https://www.epa.gov/ozone-pollution

[6] https://www.nrdc.org/sites/default/files/wasted-food-IP.pdf

[7] http://www.pnas.org/content/100/4/1505.full.pdf

[8] http://oar.icrisat.org/424/1/IndJourFer5_2_25-26_29-32_2009.pdf

[9] http://nopr.niscair.res.in/bitstream/123456789/5647/1/NPR%207(1)%2058-67.pdf

Well Managed Animal & Livestock Nutrition As Part Of A Low Carbon Future

by Eduardo Martinez

eddie blog picture

Of many discussions around Global Warming and the subject of greenhouse gas emissions (GHG), the majority are focused on causes like energy production or transportation emissions, and most of those emissions are carbon dioxide.  According to EPA’s 2016 Report, Inventory of U.S. Greenhouse Gas Emissions and Sinks, electricity production and transportation produced over 56 percent of the greenhouse gas emissions in the United States.

In addition to those well known causes, agriculture and livestock production also contribute significant amounts of greenhouse gas emissions.  The three main GHG emitted by the agriculture and livestock sector are nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) emissions, as well as losses of nitrogen (N), energy and organic matter that undermine efficiency and productivity in agriculture.

The greatest opportunity for reduction of GHG emissions in the livestock sector lie with improving the efficiency with which producers use natural resources (think tractor fuel) engaged in producing plant protein for animal production, to manage the cost per unit of edible or non-edible output. These improvements are always being pursued in the interest of increasing yield, enhancing quality, or reducing production costs, all while providing a safe and affordable food supply to the public.

There is an obvious and direct correlation between GHG emission and carbon intensities and the efficiency with which producers use natural resources. But among possible opportunities for reducing GHG emissions, fascinating breakthroughs lie in improving livestock nutrition efficiency at the unit level—in this case—the cow level. The average cow emits around 250 liters of methane per day and ruminants overall (animals like cattle, goats and sheep) contribute about 25% of all anthropogenic or man-made methane emissions.

Today universities and industry are working closely together in many ways to improve cattle production and efficiency by eliminating waste, applying the latest enzyme research to improving ruminant digestion and protein conversion. They are also introducing alternative forms of plant protein that might also be more sustainable than traditional energy-intensive animal feedstocks like soy or corn.

For example, recent studies have identified how livestock diet can affect or minimize methanogenesis — methane production.  One common misunderstanding on playgrounds across America is that the back end of the cow is the prime offender in producing GHG in the form of methane. But the truth is the vast majority of methane comes from the cow’s burp—over 95%, in fact!  Thus the opportunity for improvement lies earlier in the animal’s digestive tract.

Rocky De Nys, Professor of aquaculture at James Cook University in Townsville, Australia, has been studying the effects that introducing seaweed to a cow’s diet can have on methane production.  Specifically, Professor De Nys and his team discovered adding a small amount of dried seaweed to a cow’s diet can reduce the amount of methane a cow produces by up to 99 per cent.  The species of seaweed is called Asparagopsis taxiformis, and JCU researchers have been actively collecting it off the coast of Queensland.

“We had an inkling that we would get some success from this species, but the scale or the amount of success and reduction we saw was very surprising,” he said, adding “methane gas was the biggest component of greenhouse gas emissions from the agriculture sector.” The key aspect of Asparagopsis taxiformis is that it produces a compound – bromoform (CHBr3) – which prevents methane production by reacting with vitamin B12 at the final step, disrupting enzymes used by gut microbes that produce methane gas as waste during digestion.

Advances such as these are critical to increasing sustainability in the farm and livestock industry and reducing the carbon intensity of farming and producing our global food supply.  TerViva is providing forward thinking solutions in the form of our tree-based platform for producing plant protein and vegetable oil, Pongamia pinnata.

TerViva’s Pongamia tree produces 3 times the plant protein per acre than soy (3 tons vs 1 ton) and 10 times the vegetable oil per acre than soy (400 gal. vs 40 gal.) and all without the negative environmental impact and carbon intensity of annual row crops. Permanently installed orchard crops like Pongamia trees provide tremendous opportunities for carbon sequestration that offset anthropogenic GHG starting with the obvious visible form of the tree visible to the eye, and also from the deep and stabilizing root system below ground.  Pongamia is also a nitrogen fixing legume that takes atmospheric Nitrogen and returns badly needed (N) to the soil.

In the next 12 months, TerViva will be modeling the exact amount of carbon sequestered by our trees per acre, and therefore, the exact amount of carbon reduction that our protein meal offers as compared to soybean.  I’d bet that we’ll find our protein meal offers a compelling advantage over soybean meal in terms of greenhouse gas reduction overall.

Add these sustainable characteristics to the numerous high value products that Pongamia trees yield, and to top it off, a nice shady canopy to host a songbird’s nest or to provide some welcome shade to cattle or sheep on a hot, sunny day and you’ve got a winning addition to tomorrow’s sustainable farming portfolio.

Wild relatives may not be so crazy after all

by Madison Brown

Recently, I came across an article pertaining to a study done on the use of ‘Crop Wild Relatives.’ This study analyzed the wild relatives of crops widely used across the globe to analyze qualities such as drought-tolerance and heat resistance, amongst other more desirable traits plant breeders seek out as our climactic patterns continue to become less and less predictable.

Climatologists and weather forecasters are already calling for another El Nino event to begin this fall. El Nino typically brings weather extremes such as abnormally rainy, warm winters and dry summers. In the world of food production, this means crops struggle to survive respective seasons. For consumers, this can lead to shortages of their favorite fruits and vegetables and in the worst-case grains and other staple crops. In turn, this leads to shortages of livestock feed. These threats result in plant breeders and researchers to investigate ‘wild’ relatives to these crops that in their current form may have lost the ability to adapt.

Staple crops such as rice, barley, chickpea and sunflowers were all analyzed throughout said study. The crops analyzed in this study are major sources of carbohydrates, plant-based protein (legumes) as well as oils and are cultivated consistently throughout the world. By providing information pertaining to commonly cultivated crops, their ‘cousins’ so to speak can be analyzed to provide further understanding of said crops genetics and how the variability can provide both good and bad references of its behavior and survival in the future, or potential improvements to current cultivars. It seems the overall goal here is to increase biodiversity. However, this study left-out major oil crops such as soybeans and corn, which are responsible for ethanol, bio-diesel and other petroleum alternatives that continue to increase in utilization every year.

This article and the information it presented is compelling because our team has been applying these same principles in a process to domesticate Pongamia Pinnata, a native to India and Australia and a wild, tropical relative to legumes we consume and utilize in industrial processes every day. Native to the tropics, Pongamia is naturally drought and tolerant to most temperature and weather extremes. Considering current predictions of our climate and weather patterns for the future, Pongamia seems to fit the bill as a “Wild Relative” for future oilseed crop production.

pods 1

However, Pongamia is vastly different in that it is a tree crop, thus providing other major environmental benefits to our planet. One benefit is carbon sequestration as all trees consume significantly larger amounts of CO2 to complete photosynthesis. In addition, Pongamia is a legume – meaning it “fixes” its own nitrogen through a symbiotic process involving tiny organisms living in the soil. These organisms are called Rhizobia and they participate in a symbiotic relationship with their host by feeding on photosynthates (carbohydrates and sugars provided by photosynthesis), whilst providing nitrogen to their host. Nitrogen also happens to be the most limiting nutrient to plant growth.  With these characteristics, Pongamia can provide us with a clean, forward-thinking alternative to soybeans and other oilseed crops.

Overall, it is both refreshing and exciting to learn other scientists and organizations are performing similar research to ours, on the same path to increasing sustainability and biodiversity on this beautiful planet we call home.

Keep Edible Oils for People, and Non-edible Oils for Industry

By Tom Schenk

In 2012, actor Matt Damon starred in a movie “Promised Land”.  The story was about a rural community whose water was being contaminated from chemicals used in the injection fluids from a petroleum company’s nearby oil and natural gas fracking operation.  While the movie was a box office flop for Damon, it did raise the public’s awareness about the toxic cocktail of chemicals (benzene, toluene, xylene, and ethylbenzene, and methanol, to name a few) that are combined with the large quantities of water (up to 7 million gallons) and sand that are injected deep underground at high pressures to fracture and open up rock formations so oil and gas can flow to a well. These chemicals help to reduce corrosion of the well, lubricate the extraction process, and prevent clogs and bacterial growth.

fracking

Many studies have claimed that these chemicals were used in such small quantities that they posed little risk to aquifers and other groundwater sources. Nevertheless, the movie, numerous articles, and academic studies raised the public’s awareness about some of the potential dangers created by this new drilling technology.  And no doubt it also raised alarms in the oil and gas companies’ legal and risk management departments that contaminating the water supply of one or more cities would wipe the company off the map.

Guar gum has been used in the food industry for many decades.  It has also been one of the favorite products drillers used to hold that sand in suspension and deliver it to its destination.  The greatest source for guar gum historically has been India.  The boom in fracking has created monumental price spikes and shortages for drillers in obtaining this product and has created havoc on their P&L’s.

In recent years, ExxonMobil, Halliburton, and a myriad of other oil-related companies have been developing suitable alternatives – often from plant-based oils – for developing greener, more environmentally-friendly lubricants for their drilling activities.  They would also like to see a more dependable domestic supply for the ingredients in their fracking recipes for biodegradable polymers.

However, in the fast developing world of biodegradable polymers, drilling fluids are almost a rounding error by comparison to all the other wonderful consumer and industrial products that technology that is developing from plant-based oils such as marine oils, auto and aviation lubricants (often with superior wear and heat properties), surfactants, detergents, shopping bags, food containers and countless other products where petroleum-based products and plastics have historically dominated. This technology is in a profound growth phase as almost anything we currently know as plastic can be reproduced in a more sustainable manner with plant-based oils rather than petroleum. And it sells because the consumer wants it.

Soy is the most dominant feedstock for many of these renewable products, as well as corn, canola, flax, palm, cottonseed, peanut, and others that are cultivated in large quantities worldwide.  Couple the growth in biofuels with the growth in this new technology for industrial applications, and all it will take is one or two bad years of crop production for there to be be a collision between food security for people and feedstock supply for factories and refineries.

Only the most arable lands – which are in diminishing supply – should logically be devoted exclusively to food.  Champions of these earth-friendly fuels and industrial products made from renewable feedstocks are missing the full picture.  They should be calling for the development of high-yielding non-edible oilseed crops that can thrive on the marginal land!

This is Terviva’s mission.  One of the most promising crops in this space is the wild tree called pongamia that our company is commercializing. These oilseed trees can produce up to 10x the amount of oil per acre that the best soybean land in Iowa can produce. Carbon is sequestered, and vast fallow acreage in Florida and Hawaii is on its way to becoming annually renewable – and profitable -“oilfields”.  Hardy, high-yielding crops on marginal lands are the optimum way to achieve peak biodiversity. Leave the good lands to make food for people.

Climate Changes Role in the Syrian Uprising

Happy 2016! This is a recent post that Adam put up on ecosciencewire.com

By: Adam Hanbury-Brown

Three years before Syria’s uprising in 2011, the country experienced the worst drought in recorded history. This unprecedented dry weather caused dramatic crop failure and livestock mortality in regions heavily dependent on agriculture. The drought was so severe that one and a half million Syrian farmers were forced to relocate to the outskirts of large cities– constituting a wave of internally displaced people who would later experience further hardships and civil unrest.

07syria0214

Rebels aim their weapons during a training exercise outside Idlib

A recent study published in the Proceedings of the National Academy of Sciences (PNAS) shows that the Syrian drought was most likely exacerbated by human-caused climate change, and that these extreme weather events will be two to three times more likely in the future. The authors of this paper, Colin P. Kelly of UC Santa Barbara, Shahrzad Mohtadi of Columbia University, and their colleagues, insightfully connect the dots between human-driven climate change, the recent drought, and the Syrian uprising in March, 2011. They tease apart complex climate factors to show that climate change likely had a strong impact on the drought. Most importantly, this study serves as a reminder that climate change doesn’t need to kill directly to cause suffering. It only needs to be the tightening vice around our preexisting vulnerabilities: geopolitical instability, unsustainable agricultural policies, and disparities in wealth.

syria_1

Syrian refugee tent city

Vulnerable. That is best way to describe Syrian agriculture as the drought descended in 2006. Unsustainable agricultural policies under Hafez al-Assad (1971-2000) led to the depletion of Syrian groundwater prior to the drought. If managed more sustainably this might have ameliorated the water shortages. On top of that, the country had not yet fully recovered from the drought of the 1990s.

As the drought continued to displace farmers, internal refugees came to constitute twenty percent of Syria’s total urban population. Prices of wheat, rice, and feed doubled and this only served to exacerbate resource constraints in urban areas. Bashar al-Assad ignored the growing issues of overcrowding, poor infrastructure, unemployment, and crime- all factors that contributed to the unrest that led to the civil war.

syria-drought

Syrian sheep in a parched landscape

In order to understand climate change’s role in the drought, and subsequently the uprising, the authors analyzed long term trends in precipitation and temperature. Essentially, Syria is getting hotter and drier in accordance with the pattern predicted by increasing greenhouse gas. Seven of the eleven years between 1998 and 2009 received less rainfall than the 1901-2008 normal. The authors also point out that “three of the four most severe multi-year droughts have occurred in the last 25 years”– the era of most intense human impact on climate. Climate change is believed to be increasing sea-surface pressure in the eastern Mediterranean which is suppressing westerly winds that typically bring rain to Syria.  More alarming is that the authors cite a study which, “using a high-resolution model able to resolve the complex orography of the region concluded that the FC [Fertile Cresecent], as such, is likely to disappear by the end of the 21st century as a result of anthropogenic climate change.” It is deeply depressing that civilization will likely destroy its own birthplace.

anasazi

Anasazi Village

If connecting the dots between the Syrian crisis and climate change still seems like a leap of faith, just return to Jared Diamond’s book, Collapse, (which incidentally was published in 2005– the year before the Syrian drought started). Diamond’s account of the fall of the Anasazi Empire in the southwest of the United States around 1120 AD is an uncannily similar story. The Anasazi were a people accustomed to living in a dry landscape. Their agricultural practices worked for a period of time, but just like the Syrians, they employed techniques that lowered groundwater levels-leaving them vulnerable to drought. Before the Anasazi groundwater issue came to a head, their civilization prospered, and a ruling elite developed in city centers. Goods and food flowed in to the centers from the agrarian periphery. In 1117 AD the Anasazi experienced a severe drought that is believed to have led to severe strain on the agricultural system. Around the same time, walls and other fortifications were erected around the city centers– marking a period of civil unrest and warfare. It is believed that the farmers, forced to abandon their land, no longer tolerated the ruling elite, and the civilization fell into disarray. Archaeologists found scalped skulls and unburied bodies in the grand houses of the ruling elite from this time.

The similarities between the Anasazi and the Syrian crisis are clear. What’s different about the Syrian crisis today is that the weather events are no longer just forces of nature. Humans are exacerbating the climatic pressures that we have seen play a role in civil unrest and warfare. The 2011 drought in Russia caused a spike in food prices- a major cause of the Egyptian uprising. Recent reporting on Russia’s current drought notes that “it’s among the worst ever recorded”– words that feel surprisingly familiar when it comes to weather events these days. Let’s hope history doesn’t repeat itself… but surely it will.
____________________________________________________
Citation of the Original Scientific Article:

Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., & Kushnir, Y. (2015). Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences , 112 (11 ), 3241–3246. http://doi.org/10.1073/pnas.1421533112

Other Citations, Russian drought “worst ever recorded” quote: http://bit.ly/1HJvZOd
Photo Credit
Farmer feeling ground (featured image): Reuters, http://bit.ly/1ldekV7
Syrian Training: flikr, Freedom house
Refugees: flikr,  EC/ECHO
Refugee tents: flikr, Fabio Pena
Sheep: Green Prophet, http://bit.ly/1lzZqb4
Anasazi: pixabay